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and cubic autocatalysis with unequal diffusion
rates. II. An initial-value problem with an
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We study the isothermal autocatalytic reaction schemes, A4+B 2B (quadratic
autocatalysis), and A+ 2B — 3B (cubic autocatalysis), where A is a reactant and B is
an autocatalyst. We consider the situation when a quantity of B is introduced locally
into a uniform expanse of A, in one-dimensional slab geometry. In addition, we allow
the chemical species A and B to have unequal diffusion rates D, and Dy, respectively,
and study the two closely related cases, (Dg/D,) =0 and 0 < (Dg/D,) < 1. When
(Dg/D,) = 0 a spike forms in the concentration of B, which grows indefinitely, and
we can obtain both large and small time asymptotic solutions. For 0 < (Dg/D,) €1
there is a long induction period during which a large spike forms in the
concentration of B, before a minimum speed travelling wave is generated. We can
relate the results for case (Dg/D,) =0 to the solution when 0 < (Dg/D,) <1 to
obtain detailed information about its behaviour.
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498 J. Billingham and D. J. Needham

1. Introduction

In part I of this series of papers (Billingham & Needham 1991 a, henceforth referred
to as BN) we studied two model, isothermal, autocatalytic chemical reaction
schemes. The first scheme was based on the quadratic autocatalytic step

A+B—2B, rate k, ab, (1)
whilst the second scheme was based on the cubic autocatalytic step
A+2B-—3B, rate kyab® (2)

Here @ and b are the concentrations of the reactant, A, and the autocatalyst, B,
respectively, and k, and k, are reaction rate constants. The chemical viability of the
reaction steps (1) and (2) was discussed in BN, in particular, see Sel’kov (1968), Gray
et al. (1984), Merkin ef al. (1985) and Aris et al. (1988). In BN we considered the
travelling waves that may be generated when a quantity of the autocatalyst, B, is
introduced locally into an expanse of the reactant, A, which is initially at a uniform
concentration. In the present paper we continue our analysis of this initial-value
problem. To simplify the analysis we restrict attention to the case of one-dimensional
slab geometry with the coordinate  measuring distance.

The equations which govern the reaction and diffusion of the species A and B
under reaction schemes (1) and (2) are

Oa/0t = D, *a/0x*—k, ab™, 0b/0t = Dy0%*/0x*+k, ab™. (3a,b)

Here t is time and D, and Dy are the constant diffusion rates of the reactant, A,
and the autocatalyst, B, respectively. Under quadratic autocatalysis n = 1, while
for cubic autocatalysis n = 2. The initial conditions are

a(x,0) = a,, b, 0)=0b,g9(x), || <co, 4a)

where a, and b, are the positive, constant, initial concentration of A and maximum
initial concentration of B respectively. We now restrict attention to situations where
the initial input of B has compact support, so that g(z) is a given, non-negative
function of ¥ with a maximum value of unity and g(z) = 0 for |7 > [, where [ is a
positive, constant length. In addition, we consider the function ¢(Z) to be analytic in
|Z| < I. The boundary conditions to be statisfied by the concentrations @ and b are

a(x, t)—~>a, bxt)—0 as |¥—>00, =0. (4b)

For the purpose of this paper it is also convenient to consider g(¥) to be symmetric
about the point = 0. The problem can now be reduced to the domain # > 0 with a
symmetry condition at # = 0. After making this additional assumption, which is not
at all restrictive, the initial and boundary conditions (4a, b) become

a(z,0) = a,, b(x,0)=0b,9(x), =0, (ba)
0a /0% (0,) = 0b/0x (0,1) =0, (=0, (5b)
a(Z, ) —>a, O@&1)—~>0 as x>0, (=0 (5¢)

The initial-value problem given by equations (3@, b) together with initial and
boundary conditions (5) is also appropriate to model the situation where the reaction
proceeds on the domain > 0 with an impermeable wall positioned at # = 0. The
initial input of the autocatalyst, B, is then confined to the region 0 < 7 < 1.

Phil. Trans. R. Soc. Lond. A (1991)
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The development of travelling waves. 11 499
It is convenient to introduce dimensionless variables as
a=ala, B=b/by, t=k,all, x=(k,a’/D,)}z, (6)

in terms of which equations (3a, b) together with initial and boundary conditions (5)
become

da /Ot = ®a /O —af”, Of/0t = D*L/0x?+ af", (7Ta,b)
a@,0)=1, p@.0)=pfyglx), =0, (8a)
(Oa/0x) (0,8) = (0f/0x) (0, 1) —0, t=0, (8b)
alx,ty~>1, P, t)>0 as x—>o0, t=0. (8¢)

The parameter A = (k, a*/D )l provides a dimensionless measure of the width of the
initial input of the autocatalyst, since g(x) =0 for x> A. The dimensionless
parameter g, = b,/a, is a measure of the maximum concentration of the initial input
of B, while the dimensionless parameter D = Dy/D, measures the rate of diffusion
of the autocatalyst, B, relative to that of the reactant, A. In addition, with g(x)
analytic in 0 < « < A we have that

g@) ~ uA—2)F as @A (8d)

for some positive constant ¢, and PeN.

In this paper we study two special cases: 0 < D < 1, which models the reaction
when the autocatalyst diffuses much more slowly than the reactant; and D =0,
which models the reaction when the autocatalyst cannot diffuse. These two cases can
occur in enzyme reactions. The first situation, 0 < D < 1, arises when the reaction
involves large enzyme molecules and much smaller substrate molecules so that the
enzyme diffuses much more slowly than the substrate. The second situation occurs
when the enzyme is immobilized in a gel or membrane. Equations (7) also arise in
epidemiology, where a represents the number density of healthy individuals and £
the number density of infected individuals (see, for example, Bailey 1975). Infected
individuals are generally less mobile than healthy individuals, a situation which can
lead to either of the two cases 0 <D <1 or D =0. With D = 1, the initial-value
problem (7, 8) has been studied by Gray et al. (1990), and with modifications to
include termination steps by Merkin et al. (1989) and Merkin & Needham (1990).

In BN we studied the permanent form travelling wave solutions of equations
(7@, b). These are non-trivial, non-negative solutions that depend only on the single
variable z = x—ot, where v is the constant propagation speed, and satisfy the
conditions « > 1, f#—0 as z—00 and a >0, f—~1 as z—>—00. We found that such a
solution exists for each v = v¥(D), where v¥(D) is a non-negative, monotone
increasing function of D that represents the minimum propagation speed. We also
demonstrated that

vf(D)=2vD forall D=0, (9a)
v¥D)~ D for 0K<D<1, (9b6)

where 7 = 1.219.... In a later paper (Billingham & Needham 19915), we will show
that a travelling wave, which propagates out of the initial-reaction region with the
minimum speed v¥(D), is formed in the initial-value problem (7), (8) when ¢(z) has
compact support and D > 0. However, when D =0 the autocatalyst, B, cannot
diffuse into the region x > A, so travelling waves cannot develop. This is consistent
with the result, v¥(0) = v¥(0) = 0.

Phil. Trans. R. Soc. Lond. A (1991)
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500 J. Billingham and D. J. Needham

In this paper we begin by studying numerical solutions of the initial-value problem
(7), (8) under both quadratic autocatalysis, n» = 1, and cubic autocatalysis, n = 2.
When 0 < D €1 we find that there is a long induction period before the formation
of a minimum speed travelling wave. During this induction period, well-defined
transient features are observed in the numerical solutions, as described in §2.

We analyse these transient features in the solutions of the initial-value problem
(7), (8), when 0 <D <1, by examining in detail the initial-value problem when
D = 0. This problem has applications in its own right, as mentioned earlier. With
D = 0, asimple integration of equation (70), together with an application of condition
(8a), leads to

t

B, t) = Byg(x) exp U

0

a(x,T) dT}, n=1, (10a)

t

Bler,t) = ﬂogm{l—ﬂog(x) f a(, ) d} n=2. (105)

0
Since g(x) = 0 for x > A, we deduce immediately from (10) that f(x,t) = 0 for x > A,
t > 0. This enables us to reformulate the initial-value problem (7), (8), as
r=2At=0

Oa, /0t = %, /022, (11a)
ai(x,0)=1, a,(r,t)>1 as x—>00; (110, ¢)
0<a<<At=20
da_/0t = PPa_/a*—a_p", 0B/0t =oa_p", (12a, b)
a_(x,0) =1, Px,0)=pF,g9(x), ©Qa_/ox)(0,t)=0 (12¢, d)

together with the connection conditions
o, (A f) = a_(A,t), (Qa,/0x)(A,t) = (Ox_/0x)(A,t) for t>=0. (13a,b)
Here we have defined a (x,t) and a_(x,t) so that

a(x,t), x>A, (14 a)

e, t) = {oc_(x,t), 0<o <A (14b)

In §2 we consider numerical solutions of the initial-value problem (11)-(13). An
examination of these numerical solutions suggests that it is possible to develop
asymptotic solutions of the initial-value problem (11)—(13) for 0 <¢ <1 and ¢ > 1.
The asymptotic behaviour for ¢ > 1 is of primary interest and we consider this in §3,
whilst the details of the development for ¢ € 1 may be found in Billingham (1991).

The solution of the initial-value problem (11)—(13) can be regarded as the first
approximation to the solution of the initial-value problem (7), (8) with 0 < D < 1. In
§4 we use our knowledge of the asymptotic solution for ¢ > 1 when D = 0, which
enables us to construct asymptotic solutions for (7), (8) as D—0, valid up to t =
O(D7%), for n =1, and t = O((In D)?) for n = 2. Finally, we describe the complete
asymptotic structure of the solution for all £ > 0, « > 0 of the initial-value problem
(7), (8) as D — 0 under quadratic autocatalysis, n = 1. This consists of ten asymptotic
regions, and we determine the leading order solution in all but one of these. In
particular, we find that a propagating wave front is always generated in the long time

Phil. Trans. R. Soc. Lond. A (1991)
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The development of travelling waves. IT 501

and that the leading order problem in the region ahead of the wave front is a
nonlinear eigenvalue problem for v, the travelling wave propagation speed, which
determines v uniquely as the minimum propagation speed, v = 24/D. For cubic
autocatalysis, n = 2, it is not possible to construct the full asymptotic solution for all
t = 0as D—0. However, by determining upper and lower bounds on the asymptotic
solution in the neighbourhood of the point x = A, we can gain a full understanding of
the development of the solution.

2. Numerical solution of the initial-value problem

In this section we obtain numerical solutions of the initial-value problem (7), (8).
For the purpose of numerical integration, we take the functional form of the initial
input of the autocatalyst to be

g(x) ={1—(x/A)%? for 0<x<A, (15)

with peN. The function g(z) is thus of 0{(A —x)?} as > A~. The numerical solutions
were obtained using a modified Crank—Nicolson technique, and error checks were
performed at each time step. The details of the numerical method are not given here,
but may be found in Billingham (1991). To obtain additional information about the
solution, at each time step we calculate the functions g, and P(f) defined by

Igmax(t>= Sup {ﬂ(%,t)}, (16@)
0<z<L

IBWP(t), ) =3l = inf {|B(x, )3}, (16b)
0<z<L

where L is the extent of the large, but finite, domain in « over which the numerical
integrations were performed. The function £, ,.(¢) is the maximum value of # at time,
¢, and the point x = P(t) is a measure of the position of the developing wave front in
fB. We expect that lim, _ (dP/d¢) = v¥(D), the minimum travelling wave propagation
speed. We now discuss the results of our numerical investigation of the initial-value
problem (7), (8).

(@) 0 < D < 1: quadratic autocatalysis, n = 1

The development of the concentrations « and g is illustrated in figure 1a—e for
the typical case, D = 0.01, §, = 0.1, A = 10, p = 0. We obtain similar solutions for
p=1,2,.... As t increases the solution has three distinct phases.

(i) First induction phase, 0 <t < t;

Figure 1a at t = 2 shows the initial development of the solution. In the centre of
the initial-reaction region, 0 < x < A, the concentrations o and £ decrease and
increase, respectively, with reaction the dominant process. In the neighbourhood of
the point = A, a increases with « to its initial value of unity. This higher value of

a leads to a faster growth rate for f in the neighbourhood of x = A, and a local
maximum develops. There is also a small increase in £ from its initial value of zero
in the region « > A due to the slow diffusion of the autocatalyst, B. These processes
continue as ¢ increases and the concentration « tends to zero in the centre of the
region 0 < x < A. The growth of # in the neighbourhood of the pomt x = A continues,
driven by the diffusion of the reactant, A, into the region 0 <« < A, and a sharp
spike-shaped maximum develops. This is shown in figure 16 at ¢t = 10. During the

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 1. Graphs of the numerical solution of the initial-value problem (7), (8), with n =1, D =
0.01, B, = 0.1, A =10, p = 0, when: (a) t = 2; (b) t = 10; (c) t = 50; (d) t = 100; (e) t = 150.

first induction phase, the autocatalyst, B, is effectively confined to the region 0 <
x < A, and for > A, a significant concentration of B only exists in the immediate
neighbourhood of x = A, due to the slow diffusion. However, as ¢ increases the
diffusion of B starts to dominate the reaction in the spike and the rate of growth of
the spike in g decreases. We consider that the first induction phase has ended when
Pmax(t), the greatest value of the concentration of B, reaches its maximum value, at
t = t;. The duration of the first induction phase, ¢;, is thus defined by

Af i/l = 0. (17)
The function f,,.(¢) is plotted in figure 2 for this case. We calculate ¢; and £, (¢;)

Phil. Trans. R. Soc. Lond. A (1991)
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@ b e
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Figure 2. Graphs of the functions (@) B..(¢) and (b) P(t), calculated from the numerical solution of
the initial-value problem (7), (8), with n = 1, D = 0.01, 8, = 0.1, A = 10, p = 0. The dotted line in
(b) has slope v¥(D).

Table 1. The values of t;, 6,7/ D, B and f../ D, calculated from the numerical solution of the initial
value problem (7), (8), with n =1, fy= 0.1, A = 10 and p = 0 for various values of D

D tI tl\/l) ﬂmax ﬂmax \/D

0.008 31.082 2.780 2.931 0.262
0.009 29.224 2.772 2.801 0.266
0.010 27.803 2.780 2.693 0.269
0.011 26.636 2.794 2.599 0.273

for various values of D < 1, with £, = 0.1, A = 10 and p = 0. These are displayed in
table 1, and indicate that t; = O(D%) and S, (t;) = O(D3) as D >0, a result which
we confirm in §4.

(i1) Second induction phase, t; <t <ty

During this phase the slow diffusion of the autocatalyst, B, into the region x > A
becomes the dominant process in the spike in #. The width of the spike increases and
PBax(t) decreases with ¢. The concentration a—1 as x—co over a length scale which
increases as t increases. This process is illustrated in figure 1¢ at ¢ = 50. The function
P(t) is monotone increasing for ¢ > t; and asymptotes to a straight line with slope
v¥(D) = 24/D, the minimum travelling wave propagation speed, as t -00. Figure 26
is a graph of P(t) for this case. As t—{;;, the effect of the chemical reaction at the
leading edge of the spike increases until a minimum speed travelling wave forms at
¢t = t;; when the effects of reaction and diffusion balance each other in the wave front.
Figure 1d shows the travelling wave separating from the spike in f# at ¢t = 100.
Although it is difficult to determine ¢;; accurately, our results indicate that t;; = O(D™?)
as D —0, a result which we confirm in §4.

(iii) Travelling wave propagation, t = t

The minimum speed permanent form travelling wave which forms at the end of the
second induction phase propagates into the region & > A for ¢ > ¢;;. Behind the wave
front, the reactant, A, is completely consumed and diffusion alone acts on the
concentration f. In particular, the spike in £ slowly diffuses down to unity as ¢ —oo0.
The solution at ¢t = 150 is shown in figure 1e.

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 3. Graphs of the numerical solution of the initial-value problem (7), (8), with n = 2,
D =0.01, 8, =0.1,A =10, p = 0, when: (a) t = 30; (b) t = 60; (c) t = 140; (d) t = 600.

(b) 0 <D < 1: cubic autocatalysis, n = 2
p = 0:g(x) is discontinuous at x = A

We consider the typical case, D = 0.01, , = 0.1, A = 10, and the development of
the solution is illustrated in figure 3a—d. These show that there are four distinct
phases in this case.

(i) First induction phase, 0 <t < ¢;

The behaviour during this phase has the same qualitative features as outlined
above for quadratic autocatalysis. In particular, a spike in £ forms in the immediate
neighbourhood of the point = A. This is shown in figure 3a at t = 30. A graph of the
function f,,.(t) is illustrated in figure 4a, and in table 2 the duration of the first
induction phase, ¢;, and the maximum concentration of the spike in g, f,...(t;), are
displayed for various values of D < 1, with ﬁo = 0.1and A = 10. In §4 we demonstrate
that t; = O((In D)?) and £, (t;) = O(—D™%(In D)), as D0, consistent with these
numerical results.

(ii) Second induction phase, t; <t < by

During this phase the solution again shows the same qualitative features as
described above for quadratic autocatalysis, with the spike in £ spreading and f,,,. (t)

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 4. Graphs of the functions (a) f,,.(t) and (b) P(t), calculated from the numerical solution of
the initial-value problem (7), (8), with n =2, D = 0.01, #, = 0.1, A = 10, p = 0. The dotted line in
(b) has slope v¥(D).

Table 2. The values of t;, t,(InD)™2, B .. and B, .. Dt In D, calculated Sfrom the numerical solution of the
wnitial value problem (7), (8), with n =2, f,= 0.1, A = 10 and p = 0 for various values of D

D tI tl(lnD)¥2 ﬂma,x ﬂmaxD% lnD
0.008 40.299 1.729 3.665 —1.583
0.009 39.659 1.787 3.500 —1.564
0.010 39.003 1.839 3.352 —1.544
0.011 38.755 1.905 3.228 —1.527

decreasing as ¢ increases. This is illustrated in figure 3b at ¢t = 60. However, in this
case the wave front that emerges from the spike in § at t = {;; does not separate from
the spike, as shown by figure 3¢ at ¢ = 140, shortly after {;. For the illustrated
solution, ¢;; & 100. The effect of the chemical reaction is negligible at the leading edge
of the spike, and becomes significant only at the centre of the spike. Therefore, when
the effects of reaction and diffusion balance they do so within the spike in #, which
is where the wave-front forms.

(iii) First travelling wave propagation phase, t;; < t <ty

The wave front that emerges at ¢={; causes the spike in f to spread
asymmetrically, propagating with speed v > v¥(D), as shown by the graph of P(f) in
figure 4b. This wave front does not have the same structure as that found in a
permanent form travelling wave solution, since the concentration f does not tend to
unity as x decreases. However, as t increases, both the maximum value of £ and the
concentration gradient £, in the wave front decrease slowly and the wave front
decelerates to become a minimum-speed permanent-form travelling wave at ¢ = #;;.
We show in §4 that ¢;;; = O(D™?) and that P(t;;) = O(D™"). This leads to t;;; = O(10%)
and P(t;;;) = 0(100) for the illustrated solution. Although this is beyond the range of
our numerical integration, the results obtained are not inconsistent with these order
of magnitude estimates. The developing wave front is illustrated in figure 3d at ¢ =
600. We also expect that during this phase the spike in £ develops into a long hump,
with width of O(D™!) and maximum concentration of O(1).

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

THE ROYAL
OF SOCIETY A

PHILOSOPHICAL
TRANSACTIONS

A

SOCIETY L}

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

Downloaded from rsta.royalsocietypublishing.org

506 J. Billingham and D. J. Needham
> (a) ®)
2
B
B
12
o 1
o
o
0 20 40 O 2 T 40
X X

Figure 5. Graphs of the numerical solution of the initial-value problem (7), (8), with n = 2,
D=0.01,4,=01,A=10, p=1, when: (a) t = 50; (b) t = 200.

b
(@) 5 " .
2.4 ......... FUUUPPPPITRSTEELL e carene
ﬂmax P
12 8
o 0o 00 0 —% -

Figure 6. Graphs of the functions (@) f,,.(t) and (b) P(t), calculated from the numerical solution of
the initial-value problem (7), (8), with n =2, D = 0.01, 8, = 0.1, A = 10, p = 1. The dotted line in
(b) has slope v (D).

(iv) Second travelling wave propagation phase, t = ty;

We expect that the minimum speed travelling wave propagates away to infinity
during this phase and that the hump in g slowly diffuses down to unity.

p=1,2,...:¢g(x) s conlinuous at x = A

The solution for p =1, 2,... differs from that described above for p = 0 in two
respects. First, the spike in # does not develop in the immediate neighbourhood of
the point @ = A, where £ is small and the rate of reaction is not sufficient to generate
the spike. In addition, the second induction phase is absent with ¢ = ;. The
solution in the typical case, D = 0.01, #, = 0.1, A = 10, p = 1 is illustrated in figure
5a, b at t = 50 and 200 respectively. The development of the solution for ¢ > ¢; is as
outlined above in the case p = 0. Graphs of the functions f,,,.(f) and P(t) are shown
in figure 6 @, b respectively.

We now turn our attention to numerical solutions of the initial value problem (7),
(8) with D = 0.

(¢) D = 0: quadratic autocatalysis, n = 1

The numerical results, outlined above for the case 0 < D < 1, indicate that the
duration of the first induction phase, {; >0 as D — 0, and hence that when D = 0 this
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Figure 7. Graphs of the numerical solution of the initial-value problem (7), (8), with n = 1,
D=0,8=05A=5and (@) p=0,t=10, (b) p =1, t = 20.

2, 210
| f\;_@i@ o
L D 1) B
| e o
Brnaxlt
0o 3'01"' 60 0 "s'ot' " 100

Figure 8. Graphs of the functions ta(A,t) and ¢! 4, (¢), calculated from the numerical solution of
the initial-value problem (7), (8), withn =1, D=0, 8, =0.5,A=5and (a) p =0, (b) p= 1.

phase is indefinitely long and no travelling wave forms. The numerical solutions,
which we obtain when D = 0 confirm this prediction. The solutions in the two typical
cases, B, =0.5, A=5, p=0,1 are illustrated in figure 7a,b at ¢ =10 and ¢ = 20
respectively. These show that a sharp spike in g develops at the point « = A for
p = 0, and in the immediate neighbourhood of z = A for p = 1. The autocatalyst, B, is
confined to the region 0 < x < A, and the spike in £ grows indefinitely. These
solutions suggest that 8., = O(t) and a(A,t) = O(¢7!), which we confirm analytically
in §3. The functions ta(A,t) and ¢! £, (t) asymptote to constant values as ¢t ~oo and
are plotted in figure 8a, b for p =0 and p = 1 respectively. We obtain similar
solutions for p = 2, 3, ....

(d) D = 0: cubic autocatalysis, n = 2

p =0:g(x) is discontinuous at x = A
The solution when ¢ = 5 in the typical case, f, = 0.5, A = 5 is illustrated in figure
9. This shows that a sharp spike in £ develops at = A and grows much more rapidly
than in the case of quadratic autocatalysis. This growth is so rapid and the spike
becomes so narrow that, with the computer time available to us, it is not possible to

obtain accurate regults for ¢ > 5 in this case. In §3 we demonstrate analytically that
a(A,t) = Ot te 2%), B (t) = O(e*™) and the width of the spike is of O(e™2"") as
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24,
124 P
J «
0 ' 75 150

Figure 9. A graph of the numerical solution of the initial-value problem (7), (8), with n = 2,
D=0,p,=05A=5,p=0, when t = 5.

6@ 20 (b)
p
34
o —_— 1
: : : : . 0, :
0 75, 150 38 42 4.6 50

Figure 10. Graphs of the numerical solution of the initial value problem (7), (8), with n = 2,
D=0,8,=05,A=5,p=1, when (a) t = 30, (b) t = 50, 100, 150, 200, 250.

t— 00, where o is a positive constant. The numerical results that we present are
consistent with exponential decay and growth of the concentrations a and g,
respectively, but not accurate enough to determine o.

p=1,2,...:g(x) is continuous at x = A

The solution in the typical case , = 0.5, A = 5, p = 1 is illustrated in figure 10a at
t = 30. This shows that a spike in £ again forms, but not in the immediate
neighbourhood of the point x = A. Near this point, the concentration £ is small and
therefore the rate of reaction, which is of O(x/?), is not sufficient to generate a spike.
The behaviour of the concentration f is illustrated in figure 106 at ¢ = 50, 100, 150,
200, 250, which clearly shows that the leading edge of the spike in £ steepens and
moves towards x = A as ¢ increases. We wish to determine the position of the spike
as ¢ increases and to this end define the function x,,(¢) by (% 5ax,t) = Bmax(t). The
functions f,,,(f) and x,,,(t) are plotted in figure 11a, b respectively. We find that
Bmax(t) = O(t™) as t >0, where m = m(p) is given in table 3 for 1 < p < 5, and x,,, ()
increases very slowly as ¢ increases. We discuss the behaviour of z,,,. (f) as t >0 in
§3. For p = 2, 3,..., the solution behaves in the same manner, although the spike in
p forms further from the point x = A as p increases.
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1)
401 4
4 xmax q
ﬁmax
204 2
0 - 10, 200 0 100 200

t t

Figure 11. Graphs of the functions (a) f,,.(¢) and (b) z,,.(¢), calculated from the numerical
solution of the initial-value problem (7), (8), withn=2,D =0, 8, =05,A=5,p=1.

Table 3. The value of the constant m, calculated from the numerical solution of the initial value problem
(7), (8), withD=0,n=2,0,=05A=656for I<Sp<$

m(p)

0.96
0.83
0.80
0.77
0.73

(ST NSUN OIS

In the following section, we obtain an asymptotic solution of (11), (12), (13), the
initial-value problem with D = 0, for ¢ > 1. The asymptotic solution for { < 1 can be
found in Billingham (1990).

3. Asymptotic solution of the initial-value problem with D = 0 for ¢ > 1

The numerical solutions of the initial-value problem (11), (12), (13), which we
described in §2, reveal that for ¢ > 1 there are two distinct regions in 0 < <A,
where the behaviour of the solution is entirely different. This is shown clearly in
figures 7a, b and 9 for three typical cases where it can be seen that > 1, a_ < 1 for
0<(A—x) <1, and g=0(1), a_=o0(1) for 0 < (A—2x)=0O(1) as t—>c0. In this
section, we construct asymptotic solutions of the initial-value problem, based on this
structure, for ¢ large. However, we find that such an asymptotic solution does not
exist under cubic autocatalysis if g(x) is continuous at « = A. This result is supported
by the numerical solution when p = 1, 2, ..., a typical example of which is shown in
figure 10a. In this case, the spike in § forms away from the immediate neighbourhood
of x = A and drifts very slowly towards the point x = A.

To proceed we first consider the solution of the initial-value problem (11) for
t > 0, with the boundary condition at = A given by a,(A,t) = A(t), which is to be
determined. The initial condition (11b) fixes 4(0) = 1, whilst the above discussion
implies that

A(t)—>0, as t—o0. (18)
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The solution of equation (11a) subject to the above condition at x = 0 and conditions
(110, ¢) is readily obtained, via Laplace transforms, as

x—A 2 [ (x—A)?% .
= o+ = — © fi =A t=20. (19
a,(x,t) erf( o )+ I Lx_—l_A)A {t 1t (€ dw, for « (19)
An asymptotic analysis of equation (19) for ¢ > 1 (the details of which are given in
Billingham (1991)) shows that

(O, /0x) (A, t) = (1/(rt)?) +0(1/8), as t—>o0. (20)

We now turn our attention to the solution of equations (12a, b) in the reaction
domain, 0 < z < A. The numerical solutions, discussed above, indicate that this
develops in two asymptotic regions as ¢t -00. We label the thin region close to x = A
as region I(a), and the region exterior to this as region I(b). We then have that

in region I(a), 0<(A=2)=0(1), a_=o(1), B 1=o(1), (21)

in region I(b), 0 < (A—2) =0(1), a_=o0(1), F=0(1) as t->o0. (22)

We consider first the development in region I(a). Appropriate scaled variables in
region I (a) are

=1, () G (™, 1), (23)

where

Palt) = o(1), ¥} (1) = o(1), x,(t) = o(1),

FO@E™ 1) = 0(1), GW@™ 1) =0(1), & =0(1) as t»oo,} (24)

withn = 1, 2, for quadratic and cubic autocatalysis respectively. On using expression
(20) and the connection condition (13b), we obtain x,(t) = O(tip,,(t)) as t—>c0 and,
without loss of generality, we define

Xalt) = Ui, (). (25)
We now substitute for «_, § and « from (23) into equations (12a, b), which become,
after using (25)

A

Fi— (% " %) s Fy+ Cot e = i P =y G, (26)
n n n
(n) _ _1_ ¢nt (n) (A(n) ’ubm (n) — n—1 f(n) (y(n)"
G =gt |7 G5+ 60 = g B GO (27)
n n

With ¢,(t) = o(1) as t >00, it is readily shown that ¢,,/¢, = o(1/t¢2) as t >o0. The
leading order balance in equation (26) is thus between the reaction and diffusion
terms on the right hand side. This requires that ¢,(t) = O(1/t3y3"(1)), as t—>o0.
Without loss of generality, we take

Bot) = (1), (28)
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On using (28), a leading order balance of terms in equation (27) is obtained when
Y (8) = O(t_%lﬁi"(t)), as t—>00. Thus we have that

Y, = ot (29)

for some positive constant o. With n = 1, an integration of (29) leads to yr,(¢) = O(t)

as t—>o00, and we take y,(t) = t. For p = 2, however, an integration of (29) gives
,(t) = 0(e*?) and we put 1,(¢) = e*®. The scalings in region I(a) are, therefore

MO =15 gl =t gnt) =t n=1, (30a)

Xall) = e gy(t) = tH e () = et m=2, (308)

These scalings show that the spike in £, which develops as t —00, is exponentially thin

and has an exponentially large maximum concentration under cubic autocatalysis,

whereas these quantities are only algebraically small and large, respectively, in the

case of quadratic autocatalysis. These differences are apparent in the numerical

solutions illustrated in figures 7a, b and 9. We now consider separately the two cases
of quadratic and cubic autocatalysis.

(@) Quadratic autocatalysis, n = 1

Under quadratic autocatalysis, equations (26), (27) are

{2 (tF,+xF.—F) = F,,— FG, (31a)
6, + 330, + 0 = FQ, (31b)

where
a_(x,t) = tFOEO ), Pla,t) = D@D 1), x=A—tzD, (32)

In equations (31a, b), we have omitted the bracketed superscripts for convenience of
notation. At leading order, equations (31) become

Ky, =G, 3G, +G, =K G, (33a, b)

where F(Z,t) = F,(T)+0(1), G(Z,t) = Go(T)+0o(1) as t>oc0. In order to match with the
solution in region 1(b), where a_ = o(1) and g = O(1), we require that

Fy(z) =o(@®), Gux)=0(x? as T-—>o0. (34a,b)

The connection conditions (13a, b) must also be satisfied at Z = 0. On using (32), we
find that

Aty ~ APt as t—>o0, (35)
for some positive constant 4. Condition (13a) then requires that
Fy(0) =4, (36a)

omitting the superscript for convenience of notation, and condition (13b) reduces, via
(20) and (32) to

By (0)=—1/y/m. (36b)

In addition, equation (10a) shows that, as x—>A", f(x,t) has the same degree of
smoothness as the initial input function, g(x), for all ¢ > 0. In particular, from
equation (8d), f(x,t) = O((A—x)p) as x— A", and hence

Go(x) = O(xp) as T—0. (37)
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After subtracting equation (33a) from (330) the resulting equation can be integrated
once to give
aky, = Fy+32° Gy — 4., (38)

via condition (36a). On defining new variables as
F=F, G,=xG, x=¢, (39)
equations (33b) and (38) are reduced to the second-order autonomous system
F,=F+1G,—4,, G, =2Fd, (40a, b)
We require a solution of equations (40), subject to the boundary conditions (34), (36),

(37), which become 3
Fy(s) = o(e*), Gy(s) =0(1) as s-—>00, (41a, b)

F(s)>A,, Fs)~—e'/yv/m, Gy(s)=0e??5) as s>—0c0. (42ac)
The system of equations (40) has just two finite equilibrium points at (0,24 ) and

(4,,,0)in the (F,, G,) phase plane. The point (0,24 ) is a saddle with eigenvalues and
associated eigenvectors

i, =H{1—V(1+84,)} e, = (1,,44,)", (43a)

e =1+ (1+84,)} e, = (1, 44,,)". (430)

The point (4, 0) is an unstable node with eigenvalues and associated eigenvectors
=1, e = (1,07, (44a)

v, =24,, e, =(1,44,-2)". (44b)

We now show that there exists a unique integral path which connects the two
equlllbrlum points in the first quadrant of the (#,, ;) phase plane. We define the
closed region R by

R={(F,G): 0<F,<A4,-1G, 0<G,<24,}. (45)

From (43a), the stable separatrix of the point (0,24 ) with £, > 0, which we label
as §,, lies in the region R in the neighbourhood of (0,24 ). However, equations (40)
show that no integral path is directed strictly into the region R on its boundary. The
stable separatrix, S,, therefore originates in the region B, and the only possibility is
that it leaves the point (4, 0). The phase portrait of the system of equations (40) is
sketched in figure 12. An integral path which satisfies conditions (41b) and (42a)
must originate at the point (4, 0) and have G, bounded as s 0. The only such path
is §;, which connects the two equilibrium pomtb After applying condition (425b) the
solution is uniquely determined in terms of the constants 4, and p, and has the
asymptotic properties

Fy(s) ~ —py C(A o, p) €, (46a)
Go(s) ~ 24, —44, CA,, p)ens, 5 7% (46b
Fys) ~A,—e'//T+B(A,,p) e, (47a)
Gols) ~ (44, —2) B, p)e*tes, 25 5775 (47b)

where C and B are fixed in terms of 4 and p. Condition (41a) is satisfied by F‘O(s),
but in order to satisfy condition (42¢) we further require that

A, =3p+2), (48)
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A
Fy

Figure 12. A sketch of the phase portrait of the system of equations (40).

Table 4. The values of the constants B and C, calculated from the numerical solution
of equations (75) for p=10,1, 2, 3

P B(p) Clp)

0 0.32 1.77
1 0.15 2.70
2 0.05 4.74
3 0.02 8.65
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after which all conditions have been satisfied. We calculate the equation of 8,
numerically for p =0, 1,2,3 by integrating the equations (40) with a fourth order
Runge-Kutta method. This enables us to determine B(p) and C(p), which are
displayed in table 4.

We have now shown that
a ~—t"pu Olp) @,
B~ Hp+2)x2=2(p+2)Clp)T*"},
o~ C3(p+2)— &/ v/ T+ B(p) T,
B~ 2U(p+1)B(p)z*,

with > 1 as t—>00,

with <1 as t—>00,

where p, = {1 —+/(4p+9)}, from (43a) and (48). The approximations (50) clearly
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remain uniform as F— 0. The approximation (49b), however, becomes non-uniform
when & = O(t2), or A—x = O(1), and we approach region 1(b). Approximations (49)
demonstrate that a_(z,t) = O(t*') and f(x,t) = O(1)+O(t*). Appropriate scaled
variables in region I(b) are, therefore

a (x,t) =ty D t),  Pla,t) = fO(x) + 0D (2, 1). (5la, b)

In terms of the scaled variables (51), equations (12a, b) become, at leading order as
t—00

yozx = ﬂoo 707 1“1 ﬂoo 70’ (52&, b)

where y®(x,t) = y,(x)+o(1) and OV (x,t) = 90(96)+0(1), as t—>o0. Matching with
region I (a) leads to the boundary conditions

Yo(®) ~ s, C(p) (A — ) (53a)
Oo(x) ~2(p+2)C(p) (A—z)™ 2" 3 as x—>A". (53b)
Peo(@) ~ (p+2) (A—2)72, (53¢)
Condition (12d) also requires that
(dy,/dx) (0) = (db,/dx) (0) = 0. (54)

The function g, (x) cannot be determined by the asymptotic analysis as ¢ >00 and
depends upon the initial conditions (12¢). However, equations (52) and boundary
conditions (53a, b) and (54) determine y,(x) and 6,(x) uniquely for any strictly
positive function () which satisfies conditions (53¢) and £7,(0) = 0. This completes
the asymptotic analysm for ¢ > 1 under quadratic autooatalybls

To summarize, in region I(a), 0 < (A—x) = O(t %), and

a_ = tVE(®) +o(t™Y), B =1G,(T)+o(t), (55a, b)

where the functions F\(¥) and G(¥) are the unique solution of the boundary value
problem (33), (34), (36), (37). As illustrations, we calculate the functions F,(¥) and
G(%) numerically for the cases p = 0 and p = 1. We integrate equations (40) using a
fourth order Runge-Kutta method and ¢! F{ (%), tG () are plotted in figure 13a, b for
p=0,t=10and p = 1, t = 20 respectively. By comparison, figure 7a, b shows the
corresponding solutions of the full initial-value problem (11), (12), (13). These have
the same functional form in region I(a) as that exhibited by ¢! ¥, and G, and also
display the predicted algebraic decay and growth of o« and g respectively, and
algebraic thinning of the width of the spike in 8. Figure 8a, b shows ta(A,t) and
t7! Brnax(t) for p = 0 and p = 1, which asymptote to the constant values, {(p+2) and
SUP) <z <o Go(T), respectively, as t—co. This is in agreement with the predictions of
the present asymptotic theory.
In region I(b), 0 < (A—x) = O(1), and

a =ty @) Fo(tY), B = B () + 1 Oy(x) + o), (56a, b)

where the functions y,(x) and 6,(x) are the unique solutions of the boundary-value
problem (52), (53), (54). The solution thus depends upon the initial conditions (12¢)
in region I(b), with g steady up to O(t#), f ~ (p+2)(A—a)% as A", and a_ =
O(t*') as t—>c0. This structure is clearly displayed in figure 7a, b. Finally, we
have, via (35), (48), that

Aty ~Hp+2)tt as (o0, (56¢)
Phil. Trans. R. Soc. Lond. A (1991)
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Figure 13. Graphs of the functions ¢ 2Fj(x) and t( (x), calculated from the numerical solution of
equations (40), when (a) p =0, t =10, (b) p=1, ¢t = 20.

and we can then readily obtain the long-time behaviour of a (z,t) in x > A as
a, ~erf (by)+t(p+2) (1 —Lye i’ JW e ds+ky e—%*f), (56 d)
0
where 3 = (x—A)t"* and k is a constant which is determined by higher order terms in
the expansion of F(Z,t).
(b) Cubic autocatalysis, n = 2

We consider first the development of the solution in region I(a), 0 < (A—x) =
O(e~27"). Under cubic autocatalysis equations (26), (27) become

e s B ozl — F)— YR = B, — PG, (57a)
£Q,+o(@6G,+G) = FG?, (57b)

where
() = e RO (7D 4) Blat) = X EOED ), x= A—e T, (58)

We have again omitted the bracketed superscripts in equations (57). At leading
order, equations (57) become ’

K, . =F G, o@G,, +G,)=F G, (59a, b)
where F(Z,t) = F,(Z)+o(1) and G(Z,t) = Gy(T)+o(1), as t—>00. To match with the
solution in region I(b), where a_ = o(1) and £ = O(1), we require that

F(x)=o0&lnz), G,(x)=0Ex"') as Z—>o0. (60a, b)
Also, on using (58), we find that
Aty ~ AP 1 e‘z”‘%, (61)

for some positive constant A?. The connection condition (13a) then requires that
F(0)=A4_, (62a)

(omitting the bracketed superscript) and condition (13b) reduces, via (20) and (58),
to
£, (0)=—1/v/T. (620)
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Equation (10b6) shows that, as x - A7, f(«,t) has the same degree of smoothness as the
initial input function, g(z), for all ¢ = 0. In particular, from equation (84), f(x,t) =
O0((A—2)p) as > A", and hence

Go(Z) = 0(Tp) as Z-—0. (63)
We also note that, since f(A,t)—>00 as t->00 when p = 0, equation (106) shows that
“ 1
At)dt = , for p=0. (64)
J, a0a= 5

To solve equations (59), it is convenient to subtract equation (569a) from (596) and
integrate once to obtain

F, =ocxG,—1/V/m, (65)
via conditions (620) and (63). By defining new variables as

A~

F,=z7F, G,=z6G, T=¢, (66)
equations (596) and (65) are reduced to the second order autonomous system
By = o0,—F,=1/vr, o6, =F,G, (674, b)

We require a solution of equations (67) subject to boundary conditions (60), (62) and
(63), which become

Fi(s)=o(s), Gy(s)=0(1) as s-—>o0, (68a, b)
Fys)~A, e, F (s)+F(s)~—1//, Gy(s) = O(eP™D5) ag  s->—oc0.

(69a—c)

The system of equations (67) has two finite equilibrium points at (0, 1/0+/7) and
(—1/4/m,0) in the (F),@,) phase plane. The point (0,1/cv/7) is a saddle with
elgenvalues and associated eigenvectors given by

pr=—dl+V(1+4/0°n)}, e, = (p,,1/0° )", (70a)
P =3—1+1/(14+4/0n)}, e, = (py, 1/0°m)Y, (700)

We do not need to analyse the form of the other equlhbrlum point, (—1/4/m,0), since
this lies outside the first quadrant of the (£, d,) phase plane, and we require a
solution with K > 0 and G, > 0 for — o0 < s <00. The phase portrait of the system
of equations (67) is sketched in figure 14, where the stable separatrix of the point
(0,1/0+/m) is labelled as S,. The unique integral path which satisfies conditions (68)
as s >0 is §,, since (0, 1/0'\/11: ) is the only equilibrium point in the first quadrant ()f
the (K, G,) phase plane Equations (67a, b) show that on S, Go(s) >0 and F)(s) >

as s->—o00. The behaviour of F, and @, is then readily obtained from equations
(67a, b) and conditions (69a, b) as
Fys)~A_ e —1/y/, Gy(s) ~B, e’ as s-—>—o0, (71a, b)

where B, = o/A,,. The integral path S, thus satisfies condition (69¢) only if p = 0.
Therefore the boundary value problem (67), (68), (69) has a solution (which is unique)
if and only if p = 0, and we conclude that, for p = 1,2,..., the asymptotic structure
given by (21), (22) is not appropriate. At the end of this section we discuss the
behaviour of solutions of the full initial-value problem with g(x) continuous. When
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Gy
(0,1/0/n>
S

Figure 14. A sketch of the phase portrait of the system of equations (67).

the function g(x) is discontinuous at « = A, the solution is uniquely determined in
terms of the constants 4, and o, and has the asymptotic properties

1
—HA,,0)——e"® as s5-—>00,

F(s) ~ =B(d s, 0) pyen?s Ools) ~ p

(72a, b)

with the behaviour as s >— o0 given in (71). Here £ is fixed in terms of 4, and . On
using (72) and (71) in (58), we find that

o ~—t e VR, o) p, 7, (73a)
B~ e (1 JFoy/m) — B(A,, o) (1 jo*m) -y, With @8> 1 as i-oo, (73b)
a ~ e A —g/y/m), (Tda)
B~ B, et with T<1 as f(-—>00. (74b)

Approximations (74) remain uniform as Z-0. The approximation (73b), however,
becomes non-uniform when z = 0(e***), or (A—x) = O(1) and we move into region
I1(b). In region I (b), approximations (73) demonstrate that a_(x,t) = O("7e*1°%) and
B = 0(1)+ 0(e*1°?), Appropriate scaled variables in region I(b) are therefore

o_(x, ) = t‘%ezﬂl”‘%y(z)(x, ), Pla,t)= ,Bﬁf))(x)+e2/’1”‘%6(2)(x, £). (75a, b)
In terms of these scaled variables, equations (12a, b) become, at leading order

Yo = BeYe Pr1oby = BV (76a, b)

where y®(x,t) = yy(x)+0(1) and 6®(x,t) = Oy(x)+o(l) as t->oo. Matching with
region I(a) leads to the boundary conditions

Yol@) ~ —E(A,, o) py(A—x)"™, (T7a)
Oy(x) ~—HE(A4,,0)(A—z)y ! /odn, as x—>A", (77b)
Bo(@) ~{ov/m(A—x)} ™, (77¢)
whilst condition (12d) requires that
(dy,/da) (0) = (d6,/dx) (0) = 0. (18)

The function g (x) cannot be determined by the asymptotic analysis as {—+00 and
depends upon the specific form of the initial input function, g,g(x). However,
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equations (76) and boundary conditions (77a, b), (78) determine y,(x) and 0,(x)
uniquely for any strictly positive function £, (x) which satisfies condition (77¢) with
Be(0) =

The leading order solution thus depends upon the two strictly positive constants
A, and o, which are not determined by the above analysis. It is of interest to
examine whether these constants are fixed at higher order in the large time-
asymptotic development or remain undetermined to all orders. This is discussed in
Billingham (1991), where it is shown that ¢ and 4, remain undetermined to all
orders in the asymptotic expansions as ¢ -0c0. This is perhaps not too unexpected as
the governing equations (7a, b) are parabolic. The same situation arises in boundary-
layer theory (where the governing equations are also parabolic), and is resolved by
btewar/tson (1957). We expect that the same general remarks made in that paper will
apply here, as they are consequences of the parabolic nature of boundary-layer
problems.

In summary, we note that the large time-asymptotic structure (23) is only possible
in cubic autocatalysis when p = 0, i.e. when g(x) is digcontinuous at « = A. In this
case, we have that in region I(a), 0 < (A— x) = 0(e™ %) and

o —t_fe_z"“F( Z)+o(t™ 26‘2"‘2), p= 92"“(}’0(:?)-6-0(62"‘%), (79a, b)

where the functions F, and G, are the unique solutions of the boundary value
problem, (59), (60), (62), (63). As an illustration, we calculate the functions F,(¥) and
Gy(x) numerically in the case 4, =1, o = 1. We integrate equations (67) using a
fourth order Runge—Kutta method and find that E(1, 1) ~ 0.606. The functions F,(z)
and (7(x) are plotted in figure 15. Figure 9 shows a typical solution of the full initial
value problem, where the concentration £ has a similar functional form in region I ()
to that exhibited by G(Z). In region I(b), 0 < (A—=x) = O(1), and

o~ ezplff‘%yo(x), f~ Pz +e2”1"‘2 0,(x), (80a, b)

where the functions y,(x) and 6y(x) are the unique solutions of the boundary-value
problem (76), (77), (78), and the positive function £, (x) satisfies condition (77¢). The
solution in region I(b) thus depends upon the initial condltlons (12¢) through the
unknown function £ (x). Finally, via (61), we have that

oc+~erf(§77)+()(t‘%e_2"‘_%) as t—o0 for x>, (80¢)

where y = (x—A) 172

We now turn our attention to the behaviour of solutions of the initial value
problem when p = 1,2,... under cubic autocatalysis. The numerical solutions which
we described in §2 indicate that o(x,, {) = O(t7%) as t >o0 for %, in the neighbourhood
of the point = A, and expression (10b) then shows that B(x,, {) 00 as t - t* for some
finite t* > 0. However, we do not expect that finite time blow up in the concentration
f occurs in this case, since such behaviour does not arise when p = 0 and the rate
of growth of f is much greater than for p =1,2,.... We conclude that in fact
a(y,t) = o(t) as t >0 and that the spike in £ approaches the point & = A so that
Tmax(t) > A as t >00. From the numerical results illustrated in figures 10a, b and 11 b,
Zmax(t) > A extremely slowly as ¢{—>o00. We have demonstrated above that no
asymptotic solution with the structure (58) is available for p = 1,2,..., and conclude
that the form of the solution as ¢ —o0 is entirely different in this case and remains to
be determined. This is not pursued further in the present paper.

It may also be possible for solutions under quadratic autocatalysis to behave in a
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Tigure 15. A graph of the function Fy(%) and G,(Z), calculated from the numerical solution of
equations (103) when 4, =1 and o = 1.

similar manner to solutions under cubic autocatalysis with p =1,2,.... We have
shown that an asymptotic solution of equations (11), (12), (13) with » = 1, based on
the structure (20) requires g(x) = O((A —z)?) as x - A~. However, if all the derivatives
of g(x) vanish at x = A (for example, g(x) = O(e™V/*®) as x—A") this asymptotic
solution is not available. Although this type of input function cannot be modelled
accurately by our numerical method, we expect that a spike in g will again form but
not in the immediate neighbourhood of x = A, and behave in a qualitatively similar
manner to that found for cubic autocatalysis with p = 1,2,.... We conjecture that,
for n = 1,2, any bounded, continuous positive input function g(x) is a member of one
of two classes of functions P™ and Q™. If g(x) € P™ then the solution of the initial
value problem (11), (12), (13) develops a spike in £ in the immediate neighbourhood
of the point x = A and possesses the asymptotic structure (20) whilst if g(x) e Q™
the solution develops a spike in § which drifts extremely slowly towards the point
x = A. We have determined P® and Q® as

P® ={g(x):g(A) > 0}, QP ={g(x):9(A) =0}, (81a)

and postulate that PV and Q™ are defined by
PY = {g(x):g(x) = O((A—=x)?) as = A", for p = 0}, ‘l
QWY = {g(x):g(x) = o((A—x)?) as x> A", for Vp > O},J

(81D)

To conclude, we emphasize two interesting features of the solution when D = 0.
First, the definitions (81) of the classes of functions @ and Q® show that @@ is
‘larger’ than Q™ in the sense that Q¥ < Q®. A function g(x) is a member of Q™ if
the corresponding rate of reaction in the neighbourhood of the point x = A is too
small to generate a spike in f and set up the asymptotic structure (23) as f—oc0.
Clearly, this criterion is satisfied by a larger set of functions g(x) under cubic
autocatalysis than under quadratic autocatalysis, since the rate of reaction is of
O(af™). Second, the spike in # grows algebraically in each of the above cases, except
for n = 2 and g(x) € P®, when the spike grows exponentially. In other words, when
the initial input of the autocatalyst, B, is discontinuous under cubic autocatalysis the
reaction proceeds much more rapidly and the spike in £ becomes much larger and
narrower than in any other case.

In the next section we use the results which we have obtained here for the case
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D = 0 to obtain the full asymptotic development of the initial value problem (7), (8)
inx,t=20for0<D<1.

4. The solution of the full initial-value problem with 0 <D < 1

We now consider the solution of the full initial-value problem, (7), (8), with
0 < D < 1 and explain the features which we described in §2. We expand « and g as

alw,t) = o, t)+o(1), Pla,t) = fo(x,t)+o(1) as D—0. (82)

On substituting these expansions into equations (7), we obtain, at leading order in D,
the initial-value problem (11), (12), (13) for &, f, which we analysed in §3. The
solution of this initial-value problem has ﬂo identically zero in > A, but non-zero in
0 < z < A. This leads to a singularity in sufficiently large z- derlvatlves of /)’0 atx = A
for all ¢ > 0, with the order of the singularity depending upon the value of p =0,
1,2,.... However, solutions of the full initial-value problem (7), (8), in which the term
Dp,, is retained, must be analytic across x = A. We conclude that expansions of the
type (82) are non-uniform as x—A for all £ > 0. Physically, this non-uniformity
arises from the slow diffusion of £ into @ > A. To describe the development in the
neighbourhood of the point « = A, a further region must be introduced in which the
term Df,, is retained at leadmg order. By comldermg equation (7b), we find that this
region has width of O(D 3) as D 0. In this region o = O(1) and = O(D#?), from
condition (8d). There are, therefore, three asymptotic regions to be considered when
t = O(1). From equations (7), we can summarize the problem in each region as:

Region I; 0 <2 <A—O0(D}), t=0(1)
a=ax,t)+o(l), p=pxt)+0(l) as D-0, (82a, d)
where
Qot /Ot = %ot /Oa® —ou T, OB/t =a;f}, O0<axz<A, t=0. (83a,b)
Region II; X = D7i(x—A) = O(1), t=0(1)
a=ayX,t)+o(1), B=D?RX,t)+0D?®) as D-0,

where

0%otyy —0 %= p/0X+oay Y, n=1 or p=0,
0X? ot 2B/ 0X3, n=2 p=12..

with —oo< X <00, t>0.
Region II1; x > A+ 0(D%), t = O(1)
a=ay(,t)+o(l), f=D"Eexp{—(,(x,t)/D)+oD M)}, as D->0,
where
Ootppr /0t = QPouyyy/0a®,  Oyfrg/Ot+ (Qfry/Ox)2 =0, a>A, t=0. (85a,b)

Equations (83) are to be solved subject to boundary conditions (8b) and matching
with the solution in region II, equations (84) subject to matching with the solutions
in regions I and III, and equations (85) subject to boundary conditions (8¢) and
matching with the solution in region II. The initial conditions for equations (83)(85)
are given by (8a).
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We begin in region II, where equation (84a) shows that o is linear in the variable
X. However, to match the function a (X, ) with a; = O(1) in region I and o;;; = O(1)
in region III, a;; must be a function of ¢ alone. It is then clear that the leading order
solutions in regions I and III (up to exponentially small terms in D) are given by the
solutions of the initial-value problem (11)—(13), that is

O‘I(x7 t) = OC_(.%', t)’ aIII(x7 t) = OC+(96‘, t)’ ﬁl(x’t) = ﬂ(x’ t)

and then, from §3
an(X,0) = A(t) VIXI>0, (>0. (86)

We consider the cases of quadratic and cubic autocatalysis separately.

(@) Quadratic autocatalysis, n =1

We continue in region II, and consider first the case when p = 0. Equations (840)
and (86) lead to

0By /0t = By, JOXP+ A1) By, —o0 <X <00, >0 (87a)

whilst the initial conditions are, via (8d)

0 X>0
(X,O)={ ’ ’} (87b
ﬂII ﬂog)u X < O, )
and matching to regions I and III requires

PuX,t)>0 as X—>o0, t20, (87¢)

t
PuX,t) = By9, exp [J A(T)d'r] as X—>—o0, ¢>0. (87d)

0

The initial condition (87b) suggests that we should introduce the similarity variable
7 = X%, in terms of which equation (87a) becomes

11/ 07 + 37 0f /07 = HOPy /0t —A(t) By}, —o0 <f<o0, t2=0. (88a)
We observe that the function

t
Boga exp U A() df]
0
satisfies identically the right-hand side of equation (88a), which suggests that we try

a solution in the form
t

Pul,t) = Byg, exp [J A(r) dT] U). (88b)

0

The resulting problem for U(%) is then

=

’

L

—00
—

U+l =0; —o0 <7<, UWH{ — oo

|

The solution of this problem is readily obtained as U(7) = 3[1 —erf (37)], and we then
have
t

ﬂdmn=wwwn{fAvmﬂn—mﬂwm Cw<<m, 1>0.  (89)

0
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Therefore, in region II, when p =0
o ~ A(2), (90a;
' (x=A)
P~ 3oy exp| | A(r)dr||1—erf : as D—0. (90b)
0 2(De)

By comparing the asymptotic solution in regions I, IT and ITI with the solution of the
initial-value problem (11), (12), (13) when D = 0, we see that, at leading order, the
only difference is that for 0 < D < 1, the initial discontinuity in £ is smoothed out by
diffusion over a region with width of O(D:#?). This behaviour can be clearly seen in the
numerical solution of the initial value problem during the first induction phase
illustrated in figure 1c.

When p = 1,2,..., equation (10a), together with conditions (12b) and (8d) lead us
to replace the matching condition (87d) with

)

t

A, t) ~ Bog,(—X)? exp “‘

0

A(T)dT} as X->—o0, (91 a)

and initial conditions (876) with

0, X =0,
/80 g/\(_X)p» X< O»

whilst the matching condition (87¢) remains the same. We again introduce the
variable 7, and look for a solution of equation (88a) in the form

An(X,0) z{ (915)

b= {p exp [th(T) dT} (7).

0
The equation for w(7) is then

" +30 —pw =0, —o0 < <0, (92a)
which, to satisfy the conditions (91a, b), (87¢), must be solved subject to
0, f->00,
Pogr(—M)P,  f->—o0.

The solution to equation (92a) subject to conditions (92b) is obtained in Billingham
(1991) as

o(7) »{ (925)

- © o=is’
ko A(7) | —— ds, 70, 93a
) 0 (W)L ) 7 (93a)
w(7) =
- (T e -
klA(ﬁ)j ‘12( Atk ), 7<0, (93b)
—~00 S

where
p even, (93¢)
Y =Dy

rmo 2r+DHEp—1)—rV
Phil. Trans. R. Soc. Lond. A (1991)
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and

Bogap!

2K (L) peven, (94a)
ky=—k, =
B9, p!
et DAL odd, 946
2Rip—np 7 (B20)
Bogap!
, even, 94 ¢
(zp)! v ()
2 = p
VA
——222A8 " podd. 94d
tp-nit? )
Here, the positive constants K and K are defined by the improper integrals
e -7 1\/1'[

K= f ds = 25{ I p even, (94e)
K= l_ s odd 94f
R ERyer i p odd. (941)

This solution, which satisfies COndlthﬂ&, (92b), indicates that diffusion again acts over
a region with thickness of O(D#?). In this case, the only noticeable effect is a slow
leakage of the autocatalyst, B, into the region « > A.

It remains to determine the first term ¢, in the exponentially small WKBJ type
expansion for £ in region III. The equation (85b) must be solved subject to the
matching, boundary and initial conditions

Yolx,t)>00 as t—0 Vae>A andas x>0 Vi> 0, (95a, b)

Yola, b)) ~ (x—A)2/4t as ax—>A" Vi>0. (95¢)

The matching condition (95¢) is obtained via (906) when p = 0, or (93a) when p =
1,2,.... The solution of equation (856) subject to (95a—¢) is readily obtained as

Yola,t) = (x—A)?%/4t; x>A, t>0, (95d)

which gives an exponentially small, weakly diffusing layer of £ in region III.

The expansions in regions I, 11, III provide a uniform approximation to the
solution of the full initial-value problem (7), (8) for all x > 0 and ¢ = 0(1) as D — 0. It
remains to see whether these expansions remain uniform as ¢{—>o00. This can be
investigated directly, as we have obtained the complete solution to the leading order
problem in II, and the large time-asymptotic development of the leading order
problems in I and III (see §3).

An examination of the long-time asymptotic development in regions I and I1
shows that a non-uniformity first develops in the neighbourhood of x = A as t >o0.
The leading order solutions a;, #; in region I develop a thin layer close to @ = A~ of
thickness O(t), in which the self-similar spike in f; emerges. However, the leading
order solutions (90), (93) show that region 1l thickens about x = A as t +00, with
thickness of O(D#2). When the width of region II becomes comparable with the width
of the self-similar structure in region I, matching between regions I and 11 fails, and
a non-uniformity occurs. The timescale for this non-uniformity to develop is when
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i = 0(D2t2) which gives ¢ = O(D7%). The length scale over which the non-uniformity
occurs is thus x = A+ 0(D4) with o = O(D2 and f = 0D ) (estimates obtained from
the long time development in region II or region I as x—>A"). We identify the
development of this non-uniformity with the end of the ﬁrst induction phase, and the
above order estimates (in particular g, () = oD3), t, = = O(D%) are in good
agreement with the numerical results given in table 1.

To continue the asymptotic solution of the full initial-value problem (7), (8) as
D0 into times t = O(D?) and beyond, we must introduce further regions to
accommodate the local non-uniformity developing near x = A. The appropriate
structure for t = O(D73) is readily deduced from the long-time asymptotics for a;, #;
and oy, By (in §3), together with the present analysis of the developing non-
uniformity near x = A. We require four regions, in which the complete leading order
problems are as follows, with { = D = O(1).

Region 1V; 0 < x < A—0(D?), {=0(1)

A 1

a = Divimg (2, i) +o(D¥im), B =B, D+o(l) as D0,

where

Doy /0 —apy fry =0, 0P /0t=0, 0<xz<A, (>0, (964, b)

subject to the conditions
a0 ~ Bty @) as (-0, 0<a<A—0D, (96¢)
i@, D)= p (x) as (>0, 0<ax<A—0DW, (96d)

on matching to region I;
a(@, ) = O((A—a)m) as a—>A-, [=0(1), (96¢)
Brv(a,O) = 0([A—2]?) as x>, [=0(1), (96f)

on matching to region V; and
Pry/0x = oy /O =0 at x=0, {>0. (96¢)
Region V; X = D i(x—A) = 0(1), = 0q1),

A~

a=DiayX, ) +oD?), B=D"pyX,H+oD>) as D0,

where
Pay/0X2—ay iy =0, 2By /X% +ay fy = 0By /0, —oo<X <o, (>0,
(97a, b)
subject to the matching conditions
ocV(X,f)~Aw/f as (>0, —oo<X <o, (97 ¢)
¢ A | Pognilt—erf(X/20%], p=0,
X,t ~y oA A A1 A ~ 4
Ao {t““’)w(X/Qt?), p=12,.., as (>0, —owo<X<ow, (974)

on matching to 11, I, I1I as {0 for all |X| =0

ay(X,0) = 0Xm), puX,H)=0X"? as X>—o0, (>0, 97¢, f)
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The development of travelling waves. 11 525
on matching with region IV;
ay(X, 0 ~ X/(nl), By(X,6) = 0@ X)), as X—>o0, (>0, (97¢,h)
on matching with region VI(a).
Region VI(a); x = A+0(1), {=0(1)
o = Didy(x,0)+o(DY), B =D exp{—y(xi)/Di+oDH} as D0,

where . N p
oty /02 =0, Oy /Ot+ (g /0x)? =0, x>A, (>0, (98a, b)

subject to the matching conditions
Gy, ) ~ (x—=N)/(r)E, (i) ~ (@—2)2/4f as {0, x>A, (98¢, d)
on matching to region I11;
Gyy(x,0) >0, o, H)—~0 as x—>A, >0, (98e, f)
on matching to region V;
Gyy(a, 1) = O@), Py, i) =0@? as x>0, (>0, (994, b)
on matching to region VI (b).
Region VI(b); & = Di(x—A) = O(1), { = O(1)
@ = oy (&, 1) +0(1), B =DPrexp{—io(&/D+oDY)} as D0,
where ) L i
0y, JOf = 0%y, /042, Oy /Ol + (O, J0£)2 =0, &>0, (>0 (100a,b)
subject to the matching conditions
Gy (#,0) ~ erf (£/2(%) as (>0, &>0, (100¢)
V@0 ~ &2/4f as (>0, &>0, (100d)
on matching to region III;
Gy (&) = O@), (@, 0) =0 as £>0, (>0, (100¢, f)
on matching to region VI (a), together with the original boundary conditions (8c¢)
Gor(#,0)>1, Yo(#,0)>00 as £, [>0. (100, h)

The leading order problems in each of regions IV-VI (b) are well-posed and complete.
It remains to solve these problems in turn. We begin in region IV. The solution to
equations (96a, b) which satisfies conditions (96¢—g) is readily obtained as

(@, f) = Py (@),  Bryle, ) = (), (101)

where y,(x) and f,(x) are as defined in §3. Thus, in this region, £ remains steady, with
a continuing to decay algebraically for { = O(1). We proceed to region VI(b), where
the solution to equations (100a, b) subject to conditions (100¢—h) is given by

Gy (,0) = erf (£/20%), ro(d, 1) = #2/4f. (102)

In this region, o continues to diffuse in the presence of an exponentially small
diffusing layer in #. The solution (102) enables the far-field conditions (99a, b) in

region VI(a) to be specified more precisely as &y (x,{) ~ a/(rh), yro(x, ) ~ x%/4 as
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x—>00, i > 0, after which the solution to equations (98a, b) together with conditions
(98 ¢—f) is determined as

Gy, 1) = (= N)/(mh), o, §) = (w—A)2/4d. (103)

Within this region, the exponential order of £ is smaller (of O(e™ *)) than in region
VI(b) (of O(C“D_l)). This enables the transition between the reaction and diffusion of
f in region V and the weak diffusion layer of g in region VI(b).

It remains to consider region V. A solution to the full initial/boundary value
problem (97a-A) has not been found. However, the structure of the boundary
conditions (97g, k) indicates that the thickness of region V increases with f, being of
O(Dif?).

We have thus far continued the solution of the full initial-value problem (7), (8) into
times ¢t = O(D%), and obtained a uniform representation for all x > 0, the structure
of which contains four asymptotic regions as D — 0. Region IV is the domain where
the reaction has almost gone to completion, while regions VI (a, b) are dominated by
diffusion in o, with a weak, exponentially small layer of # diffusing forward. Region
V has a balance between reaction and diffusion of both « and 8, and accommodates
the development of the spike in # which formed in region II when ¢ = O(1). Although
we have not obtained an explicit solution in region V, the form of equations (97a, b)
suggests that the growth of the spike will be curbed in region V, and the combined
effects of reaction and diffusion will lead to the initial stages of the formation of a
travelling wave front. The details of this asymptotic structure when { = O(D%) are
in good agreement with the second induction phase identified from the numerical
solutions of the full initial-value problem in §2. In particular, the numerical solution
illustrated in figure 1c¢ shows the spreading of the spike in g during the second
induction phase. This is in good agreement with the predicted thickening of region
V, with thickness of O(Dif?), that is O(D#3).

We must now cons1der whether the structure we have just obtained for f=o0(1)
remains uniform as {—>c0. We expect this will not be the case, as the numerical
solutions of §2 have shown that the final stage of the development of the solution of
the full initial-value problem (7), (8) involves the propagation of a travelling wave
front away from the neighbourhood of x = A. This wave propagates with the
minimum speed available for permanent form travelling waves, » = 24/D (see BN).
The presence of a further non-uniformity as { oo is also indicated by the thickening
of region V. When the thickness of region V becomes of O(1), matching between V
and VI(a) fails, and a non-uniformity occurs on this time scale. The thl(kness of
region V is of O(Dif*) and the non- uniformity thus occurs when { = O(D) which is
cquwalent to t = O(D71). It is of interest to note that this is the timescale identified
in §2, from the numerical solutions, as the end of the second induction phase, when
the leading edge of the travelling wave front separates from the head of the
thickening spike in £. In terms of the present asymptotic analysib this corresponds
to the wave front emerging out of the coalescence of regions V and VI(a) when
{ =0,

To continue the asymptotic development as D — 0 of the solution of the full initial-
value problem (7), (8) into times { = O(D‘l)[t = O(D™")] and beyond, an examination
of the behaviour of the solutions in rcglons IV, V, Vl(a, b) reveals that three further
regions must be introduced when i = D4 = ()( ). The structure of the three regions
is as follows.
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The development of travelling waves. 11 527
Region VII; x = O(1), I = 0(1)

. 11 ~
o= D'e WM g(2,0), = Pynlx.)+o(l), as D0,

where
oty /02 — ayyy Py = 0’} 1y > (104 a)
. O<e<vD+A, 20,
OPyut/ O = By /a2, v (104 )
subject to the conditions (86)
oty /0 = 0Py /0x =0 at =0, >0, (104¢)

together with matching to IV, V as {0 and to VIII as  >o00. (In the above, 4, is
a function of  and v is a positive constant, which are determined at a later stage.)

Region VIII; z = x—A—oD™3 = O(1), { = O(1)
a = Diayyy (2, D +oD?), B =PuuzD+ol), as D0,

where
oty /02% — oty pyy Py = 0’} > (105a)
—oo<z<oo, >0,
v Ofyin/ 02+ vy Py = 0, (1050)
subject to matching to V, VI(a) as 0, VII as z—>—o0 and IX as z— + o0.
Region IX; 2= D% = 0(1), i=0(1)
a=a(ZD+o(l), B =DP"exp {—y,(50/D+oD)}, as D0,
where
F_ 02 52 5
Ooclx~/6t 0 ocDi/Oz —I-vaixlx/az, } 550 >0, (106 a)
OXo/ 0t = vy, /02— (0xo/02)2 — ayy, (106 b)
ax(Z D) >1, xZ >0 as Zsoo, >0, (106¢, d)

together with matching to regions VI(a, b) as {0 and region VIII as 0.

In each of the above regions, the forms of the expansions for o, # are indicated by
the respective matching requirements to regions IV, V, VI(a, b) as { 0. The region
VIII is in a moving frame of reference with constant displacement speed v4/D (in
terms of the original coordinates x,t), where v is, at this stage, an undetermined
constant of O(1). This region emerges from regions V, VI(a) as f 0. Ahead of region
VIII is region IX which is a weakly diffusing region where £ is exponentially small
and « returns to unity. This region emerges from VI(b) as {—0. Finally, behind
region VIII, we have region VII which is a predominantly diffusive region that
emerges from IV as f 0. The matching between regions IX, VIII, VII is interactive
and has to be performed as we solve the problems in turn.

We begin in region VIII. On addition of equations (105a, b), we may integrate once
to obtain

Qotyypp /02 + vy = Ao(f)> (107)

for some undetermined function 4,(f). Equations (1056) and (107) are now a second-
order nonlinear system, which is autonomous in z. These equations are, in fact, the
equations studied in BN (see equations (21) in BN) for the permanent form unit
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travelling waves of equations (7) as D —0. To match with region VII, we require
oyyrr > 0 as z—>— o0, which, from (107), then requires By — 4,(f)/v as z—>—00. An
examination of the (oty11, fyir;) phase portrait of equations (1055), (107) (see BN, §2)
then shows that we require the unique solution of these equations, which connects
the equilibrium point at (0, 4,(f)/v) to the end of the positive ay,,, axis. This solution
has ayy;(2, f) monotone increasing in z, while Byy;(2, ) is monotone decreasing in z.
As z—>00 we have

oy (2, 1) ~ Ao(f) 2, Pymlz tN) ~ e 4Dz, (108a, b)

This completes the solution in VIII, which is uniquely determined up to the function
A, (f) and the constant v. It must be shown that this solution will match with region
V and VI(a) as f > 0; however, this cannot be done until the function 4,(f) has been
determined.

We next proceed to region IX, and begin by solving equation (106a) for a;x(Z, ).
We first complete the matching conditions, which give

aux(ZD >0 as 20, >0, (109a)

on matching to VIII, and

a3, 1) ~ erf (F+0D)/20%) as [0, 2>0, (109b)

on matching to VI (b). The solution of equation (106a) subject to (106¢), (1094, b) is
readily obtained (via Laplace transforms) as

a3 =1-1

—3Z [pytico 1 . 3 N
—— J —exp [—(p+iv?)eZlePtdp, £>0, >0, (110)

21, i
where p, > 0, the branch-cut for the square root is taken along the section
(— o0, —1?) of the real p-axis, and arg(p+3iv*) =0 on the positive real p-axis.
Although (110) can readily be rewritten as a branch-cut integral, we do not pursue
this here, as all the information we require can easily be extracted from its present
form. On using the initial and final value theorems (see, for example, Watson 1981),
we obtain from (110), after some manipulation

a5, 0) ~ 1—(203//n8) exp [— (E+vi)2/4f] as -0, Z=0(1) (111a)

. (1—e ")+ 0(e™ "), 2 0<1>,} Ivoo (111
*ml% ) {1—(25%/vn5)exp[—(5+v£)2/4f], sy, J 0 e (D)

arx(Z,0) ~ [v—S{l —erf wl?)}+eF/(nl)}]Z as 20 Vi>0.  (1ll¢)

The form (111a) agrees with the matching condition (1096) as {0 with 2 = O(1),
as required. The long-time development of a;y, given by (1115), shows a double
structure. With 2= O(1) the quasi-steady travelling wave profile is developing
through interaction with region VIII as Z—0. However, the final decay to unity as
200 is through a diffusive type structure which is ‘pushed’ ahead of the wave front,
and has emerged into region IX from region VI(b) as { 0. Finally the asymptotic
form for a; as 2 0 for all f > 0 is given in (111¢). A further matching of & between
regions VIII and IX, now up to O(D3), gives, via (108a) and (111¢)

Ay(l) = v—W{1 —erf Loi?)} +e 1/ (nl)e. (112)
Phil. Trans. R. Soc. Lond. A (1991)
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The development of travelling waves. 11 529

We now turn to equation (106b) for x,(2,7). The matching conditions required to
complete the initial/boundary value problem for x,(Z,f) are obtained as

Xo(5 1) ~ G+0l)2/4f as -0, 2>0, (113a)
on matching to VI(b), and

Xo(3, 0 ~ 4,022 /2v as 20, (>0, (1135)
on matching to VIII. In addition we have condition (106d) as 200, { > 0. The
boundary-value problem posed by (1066, d), (113a, b) is nonlinear and inhom-
ogeneous, and we have been unable to obtain an exact solution. However, we are
able to obtain the solution for large and small . This is sufficient to show that this
boundary-value problem is an eigenvalue problem for v, and has a single eigenvalue
which we determine. We first obtain the leading order asymptotic form of the
solution of the boundary-value problem when 2 > 7%, which includes the asymptotic
form as I 0 for all > 0 together with the asymptotic form as {00 for 2 > i*. The
form of the initial condition (113a) suggests that we should look for a solution of the
form o ~1

Xo(Z, 1) ~ tF(Z/t), 2>t (114)

On substitution into equation (106b) we arrive at the exact equation

(F'G)P— 0+ FE)+F(E) +ax(3,1) =0, (115)
where £ = 2/1. Now, for 2> i3, a;x may be approximated via (111b), so that a;y =
14+ 0((f3/2) e #/4) for > I*. Thus, (115) becomes

F'EP—-w+A)FE+FA)+1=0 (116)

at leading order when % > % (in fact up to terms exponentially small in 277%). Tt is
readily shown that equation (116) has the one parameter family of linear solutions

F(Z;c)=ci+cv—c*—1 (117a)

for any ce R. Also, the envelope of the family of curves (117a) provides a solution of
(116) as
F,(3) =1(+v)*—1. (1170)

Local existence and uniqueness results for first-order ordinary differential equations
(see, for example, Coddington & Levinson 1955), then demonstrate that (117a, b)
provide the general solution to (116). The initial condition (113a) requires that we
choose the envelope solution (1176) of (116). Thus we have, via (1170), (114)

Xol&o D) ~ i(E+0)P =1, 2> 1% (118)
Now, the asymptotic form for x,(2,f) as { oo is given by (118) when Z > I*> 1, that
is for large 2. However, for I > 1, the boundary condition (113b), to be satisfied by
Xo(2, 1) as -0, becomes

Xo(Z, ) ~12% as 20, i>1, (119)

via (112). This condition cannot be satisfied by (118) as Z— 0, and we conclude that
the approximation (118) fails when 2 = O(1) as {—c0. The form of condition (119)
suggests that

Xo(Z.0) ~ xy(2)+o(1), Z=0(1) as i—>c0. (120a)

Phil. Trans. R. Soc. Lond. A (1991)
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530 J. Billingham and D. J. Needham
On substitution into equation (106b) we obtain, after use of (1110)

V(B P —vxi(®) + (1 —e7) = 0. (1200)
The solution of (1206) which satisfies the condition (119) is readily obtained as

v.(3) =%f[v—w—m—e-w))é]ds; 7> 0. (120¢)
0

The approximations (118), (120a, ¢) thus provide a uniform approximation to y, as
{00 for all 2> 0. It remains to match (120a) as Z->c0, with (118) as Z—>0. The
expansion to O(1) when Z = O(1), given by (1204, ¢), expanded when Z = O(1) to O({),
leads to

X0 == (= 4Pz (121a)
However, the expansion to O(f) when Z = O(1), given by (118), expanded when
Z=0(1) to O(1), results in

YV = [P — 1]+ . (121b)

The matching principle (see, for example, Van Dyke 1975) requires y1 = y(9 for
all 2> 0 as {>00. A comparison of (1214, b) then requires

v=2, (122)

after which the solutions match at leading order. This completes the details of the
solution in region IX. The problem for a;y, on matching to region VIII, determined
the function A4(f), whilst the problem for y, was an eigenvalue problem for », with
the single eigenvalue v = 2. This then gives the propagation speed of the developing
travelling wave in regions VIII, IX, as 24/D (in terms of the original coordinates
z,t). Thus, in the long time, the present initial-value problem (7), (8), develops a
travelling wave with minimum propagation speed (there is a family of travelling
waves with speed v, > 24/D for each D > 0, see BN). It is interesting to note that this
minimum speed requirement is determined in the region ahead of the main travelling
wave, where f is exponentially small, with a balance in weak diffusion and reaction
ahead of the main wave limiting its propagation speed. This is in excellent agreement
with the numerical solutions of §2.

With A4,(f) and » now determined, we return to region VIII. Since 4 ol f)>vasl—>o0,
we see, via (105b), (107), (108a, b), (112b), that oy (2, 1) and Sy (2, 1) approach the
permanent form wave profile for the minimum speed unit travelling wave as D —0
(see BN, §2). To the rear of the wave, as z——o00, we have

x~  [1+1/8mi) et >0
—~14 ‘
Py (2, olf) ~ { 12l o (123)
Thus, at the rear of the developing travelling wave, the concentration ,b’ decreases
from its initial level on leaving the diffusing spike as {—>oo in region V, and
approaches its permanent form value of unity for a unit travelling wave, as {00 in
region VIIIL. This completes all the details in regions VIII and IX. It remains only
to consider region VII at the rear of the developing travelling wave.
In region VII we consider first the problem for By (x,f). This consists of the

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

Py
/,// \\
J

A
( P 9

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

The development of travelling waves. 11 531

diffusion equation (104 b) together with condition (104¢) and the following matching
conditions

~ 1 ~ 1~ ~
Ly, t) —>;AO( ) as x—uDA+A, >0, (124 a)
Py, D)= fo(@) as >0, 0<a<A. (124b)

The full problem (1046) subject to (104c¢) and (124a, b) constitutes a moving
boundary problem for the diffusion equation. As this region is passive and the
important wave front structures have already been considered, we do not pursue this
problem in detail. However, conditions (124a) and (104c¢), together with (11256) and
(122), show that
Ponle, D) ~1+0(F), 0<x<wDH+2, (124c¢)
as [->00. The problem for ay(z,{) is given by (104a), (104¢) and the matching
conditions
Ay, D) ~ Ty (@) as T>0, 0<x<oDH+A, (125a)

sy, 1) = O™y for @ ~ oD H+O0(1), > 0. (1255)
Again, we show, via (104a), (104c), (124¢), (112b) and (122), that
oy, f) ~C, coshax as {00, (125¢)

for some fixed constant C' . Thus, in region VII as {>00, f diffuses down to the level
of unity which is fixed behind the wave front, through terms of O(7%), whilst oy, has
a cosh profile, which decays to zero exponentially in {. The early time behaviour in
region VII encompasses the passive diffusion of the spike in g, left behind after the
departure of the travelling wave in region VIII.

The structure when { = O(D™') is now complete. An examination of the leading
order solutions in each of regions VII, VIII and IX as {00, shows that this structure
remains uniform as {00, for all 2 > 0. The asymptotic solution of the full initial
value problem (7), (8) is thus complete. We have seen that the evolution of «, § takes
place on three distinct time scales, ¢ = O(1), O(D?), O(D™Y). These correspond well to
the timescales associated with the induction phases observed in the numerical
solutions of (7), (8) in §2. The spatial structure on each timescale is also in excellent
agreement with the numerical solutions. On the final timescale ¢t =0(D™), a
permanent form unit travelling wave develops and propagates out with the
minimum available speed, 24/D, which was determined by a nonlinear eigenvalue
problem in region IX, for the leading order exponentially small term in g. A
schematic diagram illustrating the asymptotic structure of the solution to the full
initial value problem (7), (8) is shown on the (f, x) plane in figure 16.

By constructing a formal asymptotic solution to (7), (8) as D — 0, uniform for all
x,t = 0, we have established the following theorem.

Theorem 4.1. With 0 < D < 1, the solution of the initial-value problem (7), (8),
a(x,t), p(x,t), up to leading order in matched asymptotic expansions, converges to the
permanent form unit travelling wave solution of equations (7) with minsmum propagation
speed 24/ D (see BN §2), in the sense that

1
O}’ ¢c> 2D,

0
1

a(y +ct, t)} N
Aly+et.t) } 0<ec<2vD,

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 16. A sketch of the ten asymptotic regions of the solution of the initial value problem (7)s
(8) with n=1, as D>0. T, a=0(1), f=0(1), 0<a<A—0DH; I, a=0(1), f=0D),
A—a| = ODr); 111, a = O(1), § = Dt Y,y = 0(1), & > A+0(D%); 1V, a = O(D#), f = O(1),
0<z<A—0Di); V, o = OD3), B=0D), I/\:ygl = 0(Dy); VI(a), a = OWs), = D’““fe‘f’ Vi =
0(1),x=A4+0(1); VI(b), « = O(1), f = DP*2e® V oy = O(1), x = /\+0(D"Z); VII, a = Dt ee™® %,
p=0(1), p = o), x=0(1); VIII, a= O(D%), B=0(1), x=2A+vDt+0(1); IX, a=0(1),

1

f=DPie® %y = 0(1), & = A+ oD+ O(D?).

b=

as t—o0 for all y > 0. In addition, the convergence is approached over a timescale
t=0D") as D—~0.

The initial-value problem (7), (8) has initial conditions with compact support in f.
This is crucial in obtaining the asymptotic structure of the solution of the initial
value problem as D — 0. The structure for initial conditions without compact support
would have to be modified and may lead to the generation of faster permanent form
unit travelling waves. Results of the type given by Theorem 4.1 have been proved
rigorously for scalar reaction-diffusion equations of the Fisher type by McKean
(1975), Fife & McLeod (1977) and Larson (1978) who showed, in particular, that
initial conditions with compact support lead to minimum speed travelling waves.

Theorem 4.1 formally extends these results to the coupled system of reaction—
diffusion equations (7).

(b) Cubic autocatalysis, n = 2
p =0, g(x) 1s discontinuous at x = A
When p = 0, equations (84b) and (86) give
0f /ot = O*P /OXEP+A()fY, —oo <X <oo, >0, (126a)

which is to be solved subject to the initial condition (87b), and the matching
conditions

t

Pr(X,t) ~ ﬂo%{l—ﬂo%f

0

-1
A(T)d’r} , X—>—oc0, t=0, (126 6)

AuX,t)>0, X—>+o0, 20, (126¢)
via (10b), where A(t) is as defined in (86). In particular, for n = 2, we have
Al ~ Ay the 2 | oo, (126 d)
Phil. Trans. R. Soc. Lond. A (1991)
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on using (61). In the absence of the complete details of 4(t), we are unable to solve
the initial/boundary value problem (126a-—c) exactly. However, the small time
solution is readily obtained as (using A(f) ~ 1 as t > 0)

BuX,t) ~ LB, g\ [1—erf{X/265}] as >0, —oo <X <o0. (127)

This behaviour is again due to diffusive smoothing of the initial discontinuity in g,
with a thin, exponentially small (as ¢—0) layer of £ diffusing into x > A. We next
consider the long time behaviour of the solution of the problem (126 a—c). Although
we have been unable to find the precise long time asymptotic development of the
solution we have obtained upper and lower solutions which bound f;(X, ¢) for all | X],
t 2 0, and provide interesting information about the behaviour of 8,;(X,t) as ¢ >o0.
In the Appendix we show that

ﬂ(X’t) <ﬂII()(’t) <B.()(>t)> |X|,t>0, (128@)
where
AX,t) = 1F(t) erfc (X/2t5), (128b)
X t X\ [t
LX,t) = L1F(¢) erfe (%)[1 _ﬂo.‘hj A(T)dT]/l:l —18,9, erfe (Q_tl) J A(T) dT],
0 *) Jo
(128¢)
and
12
F(t) = Ib)og/\/{l_ﬂogz\ j A(T)dT}o (1284d)
0

We note that both the upper and lower solutions satisfy the initial condition (87b)
and the boundary conditions (1260, ¢). Also, via equations (64), (126d) we obtain

th(T)dTN(l/ﬂog/\)—Awe_%t%/O' as t—>00, (129a)

0
and therefore
F(t) ~oe®/A, as {>o0. (129b)

Thus the upper and lower solutions remain bounded for all finite ¢, and hence so does
pr(X, t); that is, blow up in finite time cannot occur for the boundary-value problem
(126a—c). An examination of (1285, ¢), (1294, b) shows that, for |X| > &
_ 20t% —X?/at .
/B(X>t)_ﬂ(X>t)={0(e le 2 ; L 1 (130@)
O(ecwtz e—X /4t)7 (-—X) > tE,

as t —>o00. Thus, for |X| sufficiently large, the difference between the upper and lower
solutions becomes exponentially small, and we may expect that either of F(X,¢) or
A(X,t) may provide a reasonable approximation to £;(X,t). To proceed further we
thus, tentatively, use B(X,¢) to infer the structure of By (X,t) as t o0 with |X| > 1.
An examination of (12856) shows that

_ {(at%/ VA, X) exp [— (X2—80t})/4t], X > 1,

ﬂ(X’ t) ~ (O./Aoo)emrt%, (—X) > t;, (130())
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ast—o00. From (1306) we see that two levels of structure develop as t —-o0. First, the
far field for |X] large is not reached until | X| > t2 and thus the thickness of region IT
increases like O(£2). At the rear, with (—X) > £, § achieves the uniform, maximum
value in the spike in region I, which is exponentlally large as t—oco. Ahead, for
X>6 gi is exponentlally small for X > 24/20%:, but exponentially large for £ <
X < 24/207i. The transition occurs when

X ~ 2+4/20%i— (1/2/80%) i In t+ O(13), (131)

and fis of O(1). Thus, within the structure developing for X > &, there is a wave front
forming which, in terms of the original coordinates (z,t), is propagating with speed

v,(t) ~ 3 Dicit i as  {>o0, (132)

and separates the region where f is exponentially large in ¢, from that where it is
exponentially small in ¢, as ¢t >00. We note that the wave speed is of O(D?) and is
decreasing in ¢.

The above arguments have enabled us to obtain information about the structure
of the solution to the leading order boundary-value problem in region II, (126a-c),
despite being unable to obtain a solution directly. It is interesting to note that the
developing wave front at the head of region II (which is not present in the solution
for region II under quadratic autocatalysis) is in accord with the numerical solutions
of §2, where a decelerating wave was observed to advance away from the head of the
spike in # towards the end of the second induction phase. It is now clear why this
behaviour occurs for n = 2 (cubic) but not for n = 1 (quadratic). The wave structure
occurs for n = 2 through the interaction of the product of the exponentially large
reaction term and the exponentially small diffusion term for X,¢> 1, in (1306).
However, with n = 1, the reaction term is only algebraically large, of O(t) (see (90b)
with A(t) ~ A, t™" as t >00), and is always dominated by the exponentially small
diffusion term at the head of region II.

At this stage we have a uniform approximation to the solution of the full initial-
value problem (7), (8) for ¢t = O(1), through regions I, IT and ITI. However, this
approximation does not remain uniform as t—>co0. A local non-uniformity occurs in
region II, near x = A, as t—>o00. There are two possible sources for this non-
uniformity.

1. The thickness of region II in 2 < A becomes comparable to the thickness of the
self-similar structure contalnlng the spike in £ near x = A, in region I. This occurs
when e 27* = O(D), via (130b) and (23), (30b), which gives the time scale for this
non- unlformlty ast = O([In D] . The non- unlformlty is then located at 0 < (A—x) =
O(D* —1n D)), with « = O(D?) and A= 0D —In D).

2. The advancing, deceleratlng wave front formed in region I1, advances up to the
receding diffusion front in aqy, Wthh forms in region III as { o0 (see (80¢)). This
occurs, via (131), when Diti = O(t2), which leads to the estimate ¢ = O(D™?) as the time
scale for the development of this non-uniformity. The non-uniformity thus occurs
when x = A+0(D™") with g = O(1) and o = O(1). The speed of the advancing wave
front v,(t) = O(D) (via (132)) as the non-uniformity develops, which is the order of the
minimum speed for permanent form unit travelling waves when n = 2 (see BN). This
suggests that the minimum speed travelling wave emerges out of this non-
uniformity.

To develop the asymptotic solution into times of O([In D]?), and up to and beyond
O(D7*), further regions must be introduced to accommodate the two non-uniformities
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identified above. However, due to the lack of information concerning the precise
nature of the long time solution in region II, we have been unable to deduce
consistently the nature of the spatial asymptotic structure on the above, long
timescales. However, the non-uniformity (1) suggests that the first induction phase,
when the spike in £ achieves its maximum value, ends when ¢ = O([In D]?), whilst
non-uniformity (2) indicates that the minimum speed travelling wave emerges from
a decelerating wave when ¢t = O(D?). Both of these results are in good agreement
with the numerical solutions in §2, as illustrated for a partlcular case in ﬁgure 3a—d.
In terms of the notation of §2, we have t; = O([In D]?), B.x(t;) = OD =[—In DY)
and ¢;;; = O(D~?), which are in good agreement with numerlcal results given in table
2. Emally, we note that the above analysis indicates that the asymptotic structure
for X > & in region IT remains uniform for ¢; < ¢ < t;;;. This implies that the second
induction phase t; <t < {;;, has the same asymptotic structure as the first travelling
wave propagation phase, t;; <t < t;;;, and simply represents the period before the
wave front has visibly emerged from the spike in f.

p=1,2,...; g(x) is continuous at x = A
In this case, f;; satisfies equation (84c¢) in region II. The matching condition with
region I is readily obtained from equation (1056) as

B~ Boga(—X)?, as X —>—oo0, (133a)
whilst matching with region III leads to
Bi—>0 as X-—o0, (133b)

with the initial condition given by (91b). We now seek a similarity solution of the
form

puX.t) =67 B(), =X/ (134)
On substituting into (84¢), we obtain the boundary-value problem
d2 B/diP+47dB/d—ipB =0, |71 >0, (135a)
B~ fogi(—7)7 as f>—o0, (1350)
B0 as 7 —>00. (135¢)

This is identical to the boundary-value problem (92a,b) which arose in the
corresponding case under quadratic autocatalysis, and therefore B(ij) = w(77) which is
given by equations (93). This solution again represents the slow diffusion of the
autocatalyst, B, into the region > A, and shows that region II has width of O(Dt).
However, in this case, our analysis of the leading order solution in region I, given in
§3b, shows that a spike in B forms away from the immediate neighbourhood of the
point = A and drifts towards this point extremely slowly. We therefore expect that
the first non-uniformity arises in the solution of the initial-value problem at ¢ =
O(D™') when the width of region IT becomes of O(1). This indicates that t; = O(D™")
consistent with the numerical results outlined in §2. For ¢ > ¢; the behaviour of the
solution is as described above for the case p = 0. We also note that, for p =1,2,...,
we consider that the second induction phase is absent (¢ = ¢;;), since the emerging
wavefront is clearly visible when ¢ = ¢.

We have now analysed the initial-value problem (7), (8) for 0 < D < 1 with initial
input functions g(x) in each of the classes P®, P® and Q®, defined in (81). If
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x)e QW (thatisifn = 1and g(x) = o((A—x)p) asx— A",V peN), then, guided by the
behaviour of the solution for g(x) e @®, we expect that the second induction phase
will be absent, since the spike in # will not interact with the solution in region II. The
spike will therefore continue to grow until ¢ = ¢; = t;; = O(D™"), when we expect that
the minimum speed travelling wave forms and propagates away from the spike. The
behaviour of the solutions is summarized below.

Comparison of asymptotic solutions of the initial-value problem (7), (8) for 0 <D <1
under quadratic and cubic autocatalysis

g(x)e P™: first induction phase, 0 <t < t;
Quadratic. A spike in £ forms in the immediate neighbourhood of the point z = A,

with B, (t) = O(t). The spike stops growing when ¢ =t, = O(D%) and g, (t;) =
OD™).

Cubic. A spike in £ forms in the immediate neighbourhood of the point = A, with
Prax(t) = 0(e*®). The spike stops growing when

t=1t,=0((nD)?)) and A ()= O(—D¥InD)™).

As D0, D¢ > (In D)?, and hence the first induction phase is much longer under
quadratic autocatalysis than under cubic autocatalysis, since the spike in £ grows
much faster in the latter case. However, for 1.8x 1074 <D < 0.24, (In D)2 > D3,
which includes the range of values of D that we investigated numerically in §2. In
particular, for D = 0.01, D¢ = 10 and (In D) ~ 21.2, so that ¢, is of a similar duration
under both quadratic and cubic autocatalysis.

g(x) € P™: second induction phase, t; <t < by

Quadratic. The spike in § spreads and a wave front forms at the leading edge of the
spike at ¢ = ¢;; = O(D™!) and propagates away at the minimum speed, v = v¥(D) =
24/D.

Cubic. The spike in g spreads and a wave front, which forms within the splke
emerges when ¢ = t;;. This wave front propagates away with speed v ~ —D20'2t i for
1 <t <0(D7?), and causes the spike to spread asymmetrically.

g(x) € P™ : travelling wave propagation, t = t;;

Quadratic. The minimum speed travelling wave propagates away, whilst diffusion
slowly smooths out the spike in £.

Cubic. First phase, t;; <t < t;;. The wave front decelerates as it propagates away,
whilst both the concentration £ and the concentration gradient £, slowly decrease in
the wave front. The propagation speed, v —vF(D) = O(D) as t—t;;; = O(D?), when
the minimum speed travelling wave forms. This travelling wave therefore takes
much longer to form under cubic autocatalyslb than under quadratic autocatalysis.

Cubic. Second phase, ¢t > {;;;. The minimum speed travelling wave propagates
away to infinity. Diffusion has reduced the spike in £ to a long hump when ¢ = ¢,
and causes it to slowly decay away to unity as {—oc0.

g(x)eQ™

Quadratic. A spike in f forms, but not in the immediate neighbourhood of the point
x = A. The spike stops growing when ¢ = t; = O(D™!), and a wave front forms at the
leading edge of the spike. This wave front propagates away at the minimum speed,
v=10¥D)=2+D.
Phil. Trans. R. Soc. Lond. A (1991)
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Cubic. A spike in # forms, but not in the immediate neighbourhood of the point
x = A. The spike stops growing when ¢ = ¢{; = O(D™') and a wave front, which forms
within the spike, emerges. This wave front propagates away, causing the spike to
spread asymmetrically, and the behaviour of the solution for ¢ >t =1{; is as
described above for g(x)e P®.

This summary completes our analysis of the initial-value problem (7), (8) for
0<D<1.

5. Conclusion

In this paper we have analysed the behaviour of solutions of the initial-value
problem (7), (8) for 0 < D < 1, which models the development of a travelling wave
in a quadratic or cubic autocatalytic chemical reaction when the autocatalyst is
either immobilized or diffuses slowly. Our results are summarized at the end of §3 and
§4, and the most obvious feature of the solution is the spike in # which develops for
0< D < 1. When D = 0, the most striking difference between the cases of quadratic
autocatalysis, n = 1, and cubic autocatalysis, n = 2, occurs when the initial input of
the autocatalyst, B, is discontinuous at x =A. The spike in £ then grows
exponentially under cubic autocatalysis but only algebraically under quadratic
autocatalysis. The most noticeable difference between the two cases for 0 < D < 1
becomes apparent at ¢t = ¢;; when a wave front emerges from the spike in g. Under
quadratic autocatalysis this wave front immediately propagates away from the spike
in f at the minimum speed, whereas under cubic autocatalysis the wave front forms
within the spike in # and its propagation causes the spike to spread asymmetrically.
The wave front then decelerates as ¢—¢;; = O(D™?), when it reaches the minimum
propagation speed. These differences in behaviour clearly distinguish the two cases
and may be observable along with the spike in £, in epidemic propagation or enzyme
reactions when 0 < Dy <€ D,.

One of the authors (J.B.) acknowledges the support of a SERC Research Studentship.

Appendix

We consider here the initial/boundary value problem for £,;(X,t) (X|,¢t>=0),
defined by (126a—c), (87b), with A(¢) defined in (86) and with asymptotic form as
t—o0 given by (126d). We first write

/BII(X> t) = _Iﬂ(t)g(X>t)3 (A l)

with F(¢) given by (128d). The initial/boundary value problem for {(X,?) then
reduces to

A/t = O*L/AXP—A() F()E— (F'()/F (1)) L, t,1X] =0, (A2)
{X,0)=HX)—-1=GX), [X|=0, (A 3)

>0 as X—o0, (>0, (A 4)

¢>—1 as X—>—o0, >0, (A 5)

where H(X) is the Heaviside step function. We refer to the boundary-value problem
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(A 2)-(A5) as (P1), with solution ¢ = ¢, (X,t). Now, suppose equation (A 2) is
replaced by either

aL/ot = 32 /OX?, 1,|X] = 0, (A 6)
or

A/t =—-AFOF—F"()/F1) ¢ t1X] >0, (A7)

with the respective modified problems labelled as (P2) and (P3). We denote the
solution to (P2) as { = {,,(X,t;G(-)) and that of (P3) as { = {,(¢; G(X)). The solution
of (P2) is readily obtained as

1[® X . | 1X
. . — - @ = —= =), s > s
E Xt G()) 3 on G(%% w)e dw 1erfe (2 tf) X, t=0, (A8)

while the solution to (P3) is given by

Lt G(X)) = G(X){l—/fom f A(r)dT}/{HﬂogAG(X) f Ade}, X630
0 0

(A9)

Note that £ (¢; G(X)) is well-defined for all ¢ = 0, via (129a) (since A(t) is a monotone
decreasing, positive function of ¢ = 0).
We now define the functions ¢(X,t) and (X, t) to be

g(X,t) Egs(tggD(X,t;G(.))),} ¥ o
EX, ) = X, & G())), 1X],t >

noting that both { and { are well defined for all |X|,¢ > 0. On using (A 8), (A 9) in
(A 10) we arrive at the explicit expressions

(X, t) = —Lerfe (X/26),

(A 11
§_(X, t) = —1erfec (f)[ ,[z’ogAJt dT]/[l —1B,9, erfe (%) JtA(T) dr], )
0

for all |X]|,¢ = 0. We can now establish

(A 10)

Theorem. The initial /boundary-value problem (P1) has a unique, bounded solution
E(X,t) on (X, t)e(— o0, 00) x [0, 00). Furthermore

8X, 1) < LX) < LX) (A 12)
for (X,t)e(— o0, 00) x [0, 00).
Proof. An application of theorem 1 of Kolodner & Pederson (1966) with
LISl =& —8xx: 9(:8) =—AQ)F()E— (1) /F (1)
M=—-1, N=0, t,=o0. O
The inequality (128«) follows directly from (A 12), on using (A 11) and (A 1).

References

Aris, R., Gray, P. & Scott, S. K. 1988 Chem. Engng Sci. 43, 207-211.
Bailey, N. J. T. 1975 The mathematical theory of infectious diseases. London: Griffen.

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

\

A

4

/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

The development of travelling waves. 11 539

Billingham, J. 1991 Travelling waves and clock reactions in quadratic and cubic autocatalysis.
Ph.D. thesis, University of East Anglia, U.K.

Billingham, J. & Needham, D.J. 1991a Phil. Trans. R. Soc. Lond. A 334, 1-24.

Billingham, J. & Needham, D. J. 19915 The development of travelling waves in quadratic and
cubic autocatalysis with unequal diffusion rates. III. Large time development in quadratic
autocatalysis. @. appl. Math. (In the press.)

Coddington, E. A. & Levinson, N. 1955 Theory of ordinary differential equations. New York:
McGraw-Hill.

Fife, P. C. & McLeod, J. B. 1977 Arch. ration. Mech. Analysis 65, 335-361.

Gray, P., Griffiths, J. F. & Scott, S. K. 1984 Proc. R. Soc. Lond. A 397, 21-44.

Gray, P., Merkin, J. H., Needham, D. J. & Scott, S. K. 1990 Proc. R. Soc. Lond. A 430, 509-524.
Kolodner, 1. I. & Pederson, R. N. 1966 J. diff. Equat. 2, 353-364.

Larson, D. A. 1978 SIAM J. Appl. Math. 34, 93-103.

McKean, H. P. 1975 Commun. pure appl. Math. 28, 323-331.

Merkin, J. H. & Needham, D.J. 1990 Proc. R. Soc. Lond. A 430, 315-345.

Merkin, J. H., Needham, D. J. & Scott, S. K. 1985 Proc. R. Soc. Lond. A 398, 81-116.
Merkin, J. H., Needham, D. J. & Scott, S. K. 1989 Proc. R. Soc. Lond. A 424, 187-209.
Sel’kov, E. E. 1968 Euro. J. Biochem. 4, 79-86.

Stewartson, K. 1957 J. Math. Phys. 36, 173-191.

Van Dyke, M. 1975 Perturbation methods in fluid mechanics. Stanford: Parabolic Press.
Watson, E. J. 1981 Laplace transforms and applications. Van Norstrand, Reinhold.

Received 10 December 1990 ; accepted 26 February 1991

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

